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ABSTRACT

The principal technical challenge in designing a millimeter accu-

racy satellite to support two color observations at high alti-

tudes is to provide high optical cross-section simultaneously

with minimal pulse spreading. In order to address this issue, we

provide, in this paper, a brief review of some fundamental prop-

erties of optical retroreflectors when used in spacecraft target

arrays, develop a simple model for a spherical geodetic

satellite, and use the model to determine some basic design cri-

teria for a new generation of geodetic satellites capable of sup-

porting millimeter accuracy two color laser ranging. We find that

increasing the satellite diameter provides: (i) a larger surface

area for additional cube mounting thereby leading to higher

cross-sections; and (2) makes the satellite surface a better

match for the incoming planar phasefront of the laser beam.

Restricting the retroreflector field of view (e.g. by recessing

it in its holder) limits the target response to the fraction of

the satellite surface which best matches the optical phasefront

thereby controlling the amount of pulse spreading. In surveying

the arrays carried by existing satellites, we find that European

STARLETTE and ERS-I satellites appear to be the best candidates

for supporting near term two color experiments in space.
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1 INTRODUCTION

A companion article in these proceedings [Degnan, 1992] demon-
strates the benefits of utilizing and maintaining ultrashort pul-

sewidths in performing two color ranging measurements to
satellites. Unfortunately, even if one starts with a very short

pulsewidth (e.g. 35 psec), most of the existing satellites will

broaden the pulse significantly thereby degrading the precision
of the differential time-of-flight measurement. This is espe-

cially true for the high altitude satellites, such as LAGEOS and

ETALON, which are the primary targets for space geodesy

applications. The principal technical challenge in designing a
millimeter accuracy satellite to support two color observations

at high altitudes is to provide high optical cross-section simul-

taneously with minimal pulse spreading. In order to address this

issue, we provide, in this paper, a brief review of some
fundamental properties of optical retroreflectors when used in

spacecraft target arrays, develop a simple analytical model for

spherical geodetic satellites, and use the model to determine
some basic design criteria for a new generation of geodetic sat-

ellites capable of supporting millimeter accuracy two color laser

ranging.

2 RETROREFLECTOR CHARACTERISTICS

For normally incident light, a single unspoiled retroreflector

has a peak (on-axis) optical cross-section acc defined by

(4T[Ac_) (2.1)occ = P A c_ k_

where p is the cube corner reflectivity, Acc=_R z_ is the light

collecting area of the corner cube, and 4nAcc/k 2 is the on-axis

retroreflector gain. For a circular entrance aperture, the far

field diffraction pattern (FFDP) of the reflected wave is the

familiar Airy function given by [Born and Wolf, 1975]

(2Jl(X)) 2(J(x) = 0_ (2.2a)
x

where

x = kRc_sin(O_) (2.2b)

The Airy pattern consists of a main central lobe surrounded by

weak rings. The angular half-width from the beam center to the
first null is given by the first nonzero root of the Bessel func-

tion Jl which, with (2.2b), yields the formula

= 1.22--k (2.3)
O"ull Dec

where k is the wavelength and Dcc = 2 Rcc is the diameter of the

retroreflector.
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At arbitrary incidence angle, the area in (2.1) is reduced by the
factor [Minott, 1974]

2 -i
q(0i._) = _(sin _- _tan 0res)C0S0_,c (2.4)

where 0i,c is the incident angle and Ore! is the refracted angle

determined by Snell's law, i.e.

Ore!=sin-1 sin (2.5)
n

where n is the cube index of refraction. The quantity # is given
by the formula

= 4 l - 2tana0re/ (2.6)

Thus the peak optical cross-section in the center of the
reflected lobe falls off as

o'e/,, (0.,_) = "r12(0.,_) o'_c (2.7)
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Figure i: Normalized peak optical cross-section as a function of

incidence angle for an unspoiled retroreflector.
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Figure 1 shows the falloff of optical cross-section with inci-
dence angle for the two most common retroreflectors - hollow
(n=l) and quartz (n=1.455). Note that, for a solid quartz cube,
the optical cross-section falls to half its on-axis value at
roughly 13° incidence angle and is effectively zero beyond about
40° . The cross-section for a hollow cube corner falls to half its
normal incidence value at about 9° and is effectively zero beyond
about 30° .
One can further limit the effective incidence angle over which
the retroreflector responds by recessing the reflector in its
holder. It can be easily shown that the incidence angle at which
the retroreflector response is zero is given by

ema×=cot-_(D---_ ) (2.8)

where d is the depth of the recess.

3 VELOCITY ABERRATION

As mentioned previously, the far field diffraction pattern (FFDP)
of a cube corner with a circular entrance pupil function corre-

sponds to the familiar Airy pattern consisting of a single main
lobe surrounded by low intensity rings. If there were no relative
motion between the satellite and the target, the center of the

FFDP would fall on the instantaneous line of sight between the

target and satellite. However, due to the relative velocity
between the satellite and the target, the coordinates of the FFDP

are translated. The magnitude of the angular displacement in the

FFDP is given by the equation [Minott, 1976]:

d(hs,@ze.,_)= _max(hs)$COS2_ +F2(h.,e=_.)sin2_ (3.])

where the maximum value, _max, is given by the expression

/ R_getm_x(h_) = RE+h_
(3.2)

and

_/ ( REsin o=_"h2Y(hs,0=,,) = l- R_Th_ / (3.3)

and R E is the Earth radius, g = 9.8 m/sec 2 is the gravitational
acceleration at the surface, hs is the satellite height above sea

level, c is the velocity of light, and the angle

-]
_=cos [(f x_)-0] (3.4)
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where f, p, and u are all unity length vectors corresponding to

the satellite position vector (relative to the Earth center), the

line-of-sight vector between station and satellite, and the sat-

ellite velocity vector respectively. Since F(h_,O_.) is always

less than unity, equation (3.1) has an effective "minimum" value

for a given 0ze,, when _ = _/2. Thus,

O_min( l"ts, Ozo.) = Otmax( l'_s)r ( l'ts, Oz..) (3.5)

The maximum and minimum angular displacements of the FFDP are

plotted as a function of satellite height in Figure 2 assuming a

maximum 0ze" of 70 ° . It should be noted from the figure that the

angular displacement decreases with altitude and that the maximum
and minimum values converge for high satellites. At ETALON alti-

tudes (19,000 Km), for example, the angular displacement is

roughly constant at about 26 _rad.
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Figure 2: Maximum and minimum angular displacements in the retro-
reflector far field diffraction pattern caused by the velocity
aberration effect as a function of satellite altitude above the

Earth's surface.

If the target FFDP is angularly narrow relative to the size of

the velocity aberration displacement, the receiver will lie on

the low signal edge of the FFDP or even lie outside the FFDP

entirely. For example, consider a moving retroreflector whose
face is normal to the ranging system line-of-sight. The cross-

section is given by (2.2a) with x=kRccsin(a)-kRcc_ where alpha is

the instantaneous angular displacement caused by velocity
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aberration. If _ <<a,uu, the reduction in cross-section is negli-

gible. However, if _ is large, the reflected beam will "miss" the
receiver and low or nonexistent signal levels will result. For

non-normal incidence angles, the reflected FFDP is no longer cir-

cularly symmetric since the collecting (and transmitting) aper-
ture of the retroreflector appears as an ellipse to the range

receiver. The FFDP peak is again along the instantaneous receiver

line-of-sight, but the FFDP is now given by the two-dimensional

Fourier transform of the elliptic entrance aperture of the corner

cube. The velocity aberration causes the retroreflector response
to be reduced relative to the peak value given by (2.7). This

reduction is greater for velocity vectors which are parallel to

the long axis of the ellipse because of the faster falloff of the

FFDP with angle in this direction.

4 RETROREFLECTOR "SPOILING"

TO reduce the effects of velocity aberration in large retrore-

flectors, the retroreflector is often "spoiled". The goal of

"spoiling" is to concentrate more reflected energy into the

annular region bordered by uma× and Um_n" Ideally, one would like

to uniformly spread the energy within the annular ring yielding

an optimum cross-section given by

_a_l=pA_ _ =pA_ 2 - 2_max _min

where the quantity in parentheses is the effective target gain

and _cc is the solid angle subtended by the annular ring of

interest. However, conventional spoiling techniques generally

result in average optical cross-sections which agree only within

an order of magnitude with the ideal limit described by (4.1).

Spoiling is usually accomplished by introducing slight variations
into the cube corner dihedral angles (typically less than two

arcseconds). This creates a complicated FFDP which, for an inci-

dent beam normal to the cube face, breaks the initial single main

Airy lobe into 2N lobes (where N = 1 to 3 is the number of

spoiled dihedral angles) distributed within an angular annulus.
The mean angular radius of the annulus increases linearly with

the dihedral offset angle from a perfect cube and, from diffrac-

tion theory [see (2.3)], one expects the effective width of the
various lobes to depend inversely on cube diameter.

Each of the 2N lobes originates from a different sector of the

retroreflector entrance aperture. In fact, the FFDP of each lobe

is determined by the two-dimensional Fourier transform of the

projection of the 180°/2N sector of the (assumed) circular retro-
reflector entrance aperture into a plane perpendicular to the

line-of-sight between the satellite and the station. The

distribution of energy within this "annulus" is therefore highly
nonuniform. Furthermore, the effective area for each lobe is

reduced to:
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Ace (4.2)
AoH= q(Oi.c)2--

Substituting the latter expression into (2.1), we obtain an

approximate expression for the peak optical cross-section at the
center of one of the 2N lobes for the spoiled retroreflector at

arbitrary incidence angle

oct (4.3)
opeak(ei.c,N) = qZ(o_._)(2N)2

One can also "spoil" the retroreflector by placing or grinding a
weak lens onto the entrance face. This approach retains the

single central lobe of the unspoiled cube corner while reducing

its peak amplitude and spreading the energy over a wider solid

angle, _. This yields a peak cross-section given by

o0
and can be an effective approach when velocity aberrations are

sufficiently small.

5 SATELLITE OPTICAL CROSS-SECTION

As noted previously, the optical cross-section which can be
achieved with a single retroreflector is limited by the need to

compensate for velocity abberation effects. Received SLR signals

can only be enhanced by summing the contributions of several
retroreflectors. Modern geodetic target satellites (e.g., STAR-

LETTE, LAGEOS, and ETALON) are all designed to be spherical in

shape in order to avoid the large pulse spreading caused by
earlier flat panel arrays when viewed at non-normal incidence.

The spherical shape also simplifies the modelling of nonconserva-

tive forces acting on the satellite.

Satellite array size is largely determined by the satellite alti-
tude since more retroreflectors are required to achieve reason-

able signal-to-noise ratios over longer slant ranges. Thus,
STARLETTE (960 Km), LAGEOS (5900 Km), and ETALON (19,200 Km) have

diameters of 12, 60, and 129.4 cm and average optical cross-

sections of .65, 7, and 60 million square meters respectively.

Let us consider a spherical satellite which is uniformly covered

with retroreflectors. The density of cube corners, as a function

of incidence angle, is easily seen to be

N
N(Oi,¢)dO_,_=--sine d0i,_

2 inc

where N is the total number of reflectors on the satellite. To

obtain a simple expression for the overall target cross-section

g, we approximate the sum over all of the retroreflectors within

the allowed range of incidence angle by the following integral
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K

fo 2 (5.2)O = 0co d0_.cN (0inc)_2 (0in¢)

where we have used (2.7). If the retroreflectors are not recessed

in their holders, _(0_nc) is given by (2.4). If their angular

response is limited by the recess, the variation can be well-

approximated by the expression

(5.3)
= 1 ---

max

where Omax is given by (2.8). Actually, (5.3) is an excellent

approximation to (2.4) as well provided we choose 0ma x equal to

.54 rad (31 ° ) for hollow cubes or .75 rad (43 ° ) for solid cubes

respectively (see Figure i). Substituting (5.2) and (5.3) into

(5.2) and evaluating the resulting integrals yields

° ccN 1

Let us now examine the validity of (5.4) by substituting IA_GEOS
values. The IA_GEOS satellite has a radius R = 29.8 cm and is
imbedded with 426 retroreflectors (422 fused quartz and 4 germa-

nium) with a clear aperture diameter Dcc of 3.81 cm. Ignoring the
fact that four cubes are germanium, we choose R = 426 and a value

of 0max = .75 rad for solid quartz cubes. We now use a value oc¢ =

2.834 x 106 in agreement with the input values to the RETRO com-
puter program as determined during IA_GEOS testing and evaluation
[Fitzmaurice et al, 1977]. Substituting the latter values into

(5.4) yields

OLACEOS=9.80cc=2.Y8xlOTm2 (5.5)

This is roughly equal to the peak value computed by the much more

detailed RETRO program which showed a range of values between .54
and 2.7 x 107 m2. Equation (5.4) tends to overestimate the actual

cross-section because it includes only geometric, and not veloc-

ity aberration, effects. Equation (5.5) also implies that the

LAGEOS array cross-section is roughly 9.8 times that of a single
cube corner at normal incidence.
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Figure 3: Diagram of a spherical geodetic satellite defining the

variables used in the analysis.

6 SATELLITE IMPULSE RESPONSE AND TARGET SPECKLE

An individual retroreflector responds as a point source and hence

does not spread the laser pulse in time. However, with a typical

array of retroreflectors, the laser pulse arrives at the "reflec-

tion center" of each retroreflector at a slightly different time

leading to a broadening of the received pulse [Degnan, 1985]. The
location of the "reflection center" for an individual solid cube

corner reflector is given by [Fitzmaurice et al, 1977; Arnold,

1978]

si mc
AR(O_.c)=nL 1 - = nLcosOre ! (6.1)

where &R(8_.c) is measured from the center of the front face of

the cube corner to the reflection point, L is the vertex to front

face dimension, n is the refractive index of the corner cube

material, 8_,c is the angle of incidence, and erel is the corre-

sponding refraction angle. From Figure 3, it can be seen that a
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cube at an angle 0_,c to the incident wave produces a time delay,

relative to the surface of the satellite closest to the ranging

station (8_,c= 0), given by

< [ IIAt(O_nc)=2{ks_[R _Ak(O_nc)]cosO_nc}= 2Rs_ 1-cosOmc 1-_-£coSO're I (6.2)
e s e

where Rs is the satellite radius. It should also be noted that

the differential delay between target reflection points also

introduces a random phase delay between individual reflectors.

Thus, if the temporal profiles from multiple cubes overlap at the

range receiver, the electric fields will interfere with each
other in a random way from shot to shot resulting in target

"speckle". On average, however, the return waveform from the sat-
ellite should behave as if each of the retroreflectors is an

incoherent source. This was an implicit assumption in our

derivation of target optical cross-section in Section 5.

In the same spirit, the time-averaged satellite impulse response

can be estimated by summing the weighted (incoherent) returns
from each of the retroreflectors. Using the simple model for a

spherical satellite introduced in Section 5, the impulse response
can be shown to be

N f02 2/(t)= o_ -_ dO;._sin O_._q (O,.c)5[t-At(O_.c)]
(6.3)

where the geometric weighting factor is given by (2.4) or

(5.3),A/(0inc) is given by (6.2), and the delta function

5[t-At(0_,c)] represents an infinitely short laser pulse waveform

incident on the satellite. From (6.2), we see that the delta

function is nonzero only when the condition

cose(_,c,n)=
1-T

%/ l [cose(_.c,.)]2l -E 1 -_+ .

holds where we have defined the new variables

(6.4)

ct

2R_
E < 1; < 7; max

nL "_m_, =l-cosOm_X 1-6 1-_-"_+ (6.B)E =/i,"_

The variable T is a normalized time, expressed in units of the

roundtrip transit time from the surface of the satellite to the

center and back, and e is the ratio of the optical depth of the

cube to the satellite radius. The minimum and maximum values of T
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are determined by setting O equal to zero and Omax respectively in

(6.4) and solving for x. The total pulse duration, measured at

the baseline, is given by At=tmax-E.

From (5.3) and (6.3), the satellite impulse response can now be

expressed as a function of the variables T, 6, n, and 0max, i.e.

N . [ 0(_,6,n)12/ ('_, E, n, Omax)= occ-_91n O(T, E,/_) l OmaZ
(6.6)

where 0(T.E,n) is defined by (6.4). In the limit of large satel-

lite diameters (6 _ 0), (6.4) reduces to the simple form

0(_.0,n)=c0s-1(l-_) (6.7)

and (6.6) becomes

")El(T_,O,n,Omax)=OccN 1 --_ 1 - Cos-l(1 -T)] 2 (6.8)
O max

The quantity'6 is typically small and, for nonzero values of e,

(6.4) can be easily solved by iteration using (6.7) as a starting

point, i.e.

[cosO(_,c,n)]j._
1-T

l [[c0sO(_,e,n)]j ]21 -e 1 -_+ -.

(6.9)

until it converges.

As an illustration, let us use (6.6) to estimate the impulse

response of the LAGEOS satellite. Substituting n = 1.455 (fused

silica), L= 1.905 cm, and Rs = 29.8 cm into (6.5b), we obtain a

value e = .093. We recall that, for solid cube corners, we can

use a value Omax = .75 rad. Now, using (6.6) and (6.9), we obtain

the plot of the LAGEOS impulse response shown in Figure 4(a). The

profile shows the characteristic fast rise and long tail of the

LAGEOS response. Furthermore, if we compute a center-of-mass cor-

rection from the centroid of this impulse response profile, we
obtain a value of 250.2 mm which is in excellent agreement with

the accepted LAGEOS value of 249 _ 1.7 mm [Fitzmaurice et al,

1977].

The impulse response in the large satellite limit, given by

(6.8), is shown in figure 4(b) for the case of solid quartz and
hollow cubes. Note that both the temporal width of the reflected

pulse and the target optical crossection is smaller for the hol-
low cubes than for the solid cubes because of their smaller field

of view.
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Figure 4: (a) Impulse response of the LAGEOS satellite as com-

puted by our simple analytical model. (b) Impulse response in the

large satellite limit for both hollow and solid quartz cubes.

7 FEASIBILITY OF MILLIMETER ACCURACY SATELLITES

We will now demonstrate that, in order to achieve high optical

cross-section simultaneously with minimal pulse spreading with a

spherical satellite, we must increase the satellite diameter

and/or retroreflector density and simultaneously restrict the

response to retroreflectors within a relatively small solid angle
on the satellite surface about the station line o_ sight.
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The total time duration of the reflected pulse (0% to 0% inten-

sity points) can be determined from (6.5), i. e.

2Rs 2Rs[2Omax[ _ sin20max IIat=--(_max-E)=c _ _2sin --+E2 cOSOmax 1 n2 1 (7 .1)

which, in the limit of small maximum incidence angles, reduces to

In the same limit, Eq.

section reduces to

(7.2)

(5.4) for the satellite optical cross-

o_N 02
Ot_ max (7.3)

As mentioned earlier, the angular response can be restricted by

recessing the retroreflectors in their holders. Substituting

(7.2) into (7.3) yields

OccN CAtma x0 - (7.4)

24 R_ 1-_ 1+_

We can now express the total number of retroreflectors as

N = 4 6 ..j._ (7A5)
R ¢r

where [3 is a "packing density" ( = .435 for LAGEOS) which repre-

sents the fraction of total surface area occupied by the cube

faces. Substituting (7.5) into (7.4) yields our final result

o_¢ f3R_cAto- (7.6)

The product #R,cAt in (7.6) quantifies our earlier statement

that, if we wish to reduce the amount of pulse-spreading At by

some factor (via reduction of the retroreflector field-of-view),

we must increase the retroreflector packing density -satellite

radius product (_R_) by the same factor to retain a similar tar-

get cross-section.

8 CONCLUSION

As mentioned previously, the principal technical challenge in

designing a millimeter accuracy satellite to support two color

observations at high altitudes is to provide high optical cross-

section simultaneously with minimal pulse spreading. Increasing

the satellite diameter provides: (I) a larger surface area for

additional cube mounting thereby leading to higher cross-

sections; and (2) makes the satellite surface a better match for
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the incoming planar phasefront of the laser beam as in Figure 3.

Simultaneously restricting the retroreflector field of view (e.g.

by recessing it in its holder) limits the target response to the
fraction of the satellite surface which best matches the optical

phasefront thereby reducing the amount of pulse spreading.

For near term experiments, the small radius of STARLETTE makes it

an attractive target for testing and.evaluating two color systems

or for testing atmospheric models. Furthermore, its low altitude

(960 Km) and moderate target cross section results in relatively

high received signal levels. AJISAI, also in a relatively low
1375 Km orbit, consists of small clusters of retroreflectors sep-

arated by large reflecting panels and has comparable signal

strength to STARLETTE. Unfortunately, the satellite is quite

large and simultaneous returns from several retro clusters
results in a complicated satellite signature [Prochazka et al,

1991]. From Figure 4, LAGEOS spreading is in excess of 150 pico-
seconds FWHM in agreement with [Fitzmaurice et al, 1977]

although, with sufficiently short laser pulses (<50 psec),
individual retro rings should be resolvable via streak cameras at

certain satellite orientations. (Note that the simple satellite

model presented here gives an average response over the full

range of satellite orientations and shows none of the structure
expected from a particular orientation). The LAGEOS pulse spread-

ing combined with relatively low signal returns, measured at the
few to several tens of photoelectron level for most systems,

would make the necessary differential timing very difficult [Deg-

nan, 1992].

Another useful target for two-color system evaluation is the

recently launched European Earth Remote Sensing satellite, ERS-I.
It flies at a relatively low altitude (<800 Km) and has a small

compact target consisting of one nadir-viewing retroreflector
surrounded by a uniformly spaced ring of eight identical cube

corners at a nadir angle of 50 ° • Approximate modelling of this

satellite by the author indicates that sharp returns consisting

of one or two peaks (well separated) can be obtained from most

viewing angles as illustrated in Figure 5. At nadir angles
between 0° and 15 ° , the nadir viewing cube is dominant whereas,

for nadir angles between 30 ° and 70 ° , the ring provides a sharp

return at virtually all azimuthal angles. At nadir angles between
about 15 ° and 30 ° , there is some overlapping of returns and pulse

distortion.
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